

Basic distributed computing problems	More specifically
 Coordination, synchronization, agreement Fault-tolerance According to the applications Security Anonymity (Anonymous vs pseudonymous) Dynamicity 	Seem to be central in blockchains Distributed agreement to build mutual trust without centralized control Cryptography: public key cryptosystems (RSA-like) * to sign * to hide Dynamicity They are distinct issues
FIRISA © M. Raynal Blockchain: buzzword/engineering/science? 5 Historical perspective: from exchange to trust	C M. Raynal Blockchain: buzzword/engineering/science? 6
 Internet: democratization of exchanges Communication (email) Centralized services (data centers) Publish/subscribe Web pages (queries/responses) Information (wikipedia) Etc. Blockchain: mutual agreement-based trust store, authenticate, verify, trust 	Looking to the basics
* without centralized control/authority	IRISA © M. Ravnal Blockchain: huzzword/engineering/science? 8

The notion of a (distributed) task	Distributed computing: birth certificates
 A task <i>T</i> is a triple (<i>I</i>, <i>O</i>, Δ) * <i>I</i>: set of input vectors (of size <i>n</i>) * <i>O</i>: set of output vectors (of size <i>n</i>) * Δ: relation from <i>I</i> into <i>O</i>: ∀<i>I</i> ∈ <i>I</i>: Δ(<i>I</i>) ⊆ <i>O</i> <i>I</i>[<i>i</i>]: private input of <i>p_i</i> <i>O</i>[<i>i</i>]: private output of <i>p_i</i> ∀<i>I</i> ∈ <i>I</i>: Δ(<i>I</i>) defines the set of legal output vectors that can be decided from the input vector <i>I</i> 	 "From prehistory to history" L. Lamport, Time, clocks, and the ordering of events in a distributed system. Communications of the ACM, 21(7):558-565 (1978) * Partial order on events * Scalar clocks * State machine replication Fischer M.J., Lynch N.A., and Paterson M.S., Impossi- bility of distributed consensus with one faulty process. Journal of the ACM, 32(2):374-382 (1985) * Impossibility result in asynch. crash-prone systems Notion of valence (contures non determinism)
IRISA © M. Raynal Blockchain: buzzword/engineering/science? 17 A few historical dates: victories & defeats	IRISA © M. Raynal Blockchain: buzzword/engineering/science? 18 A famous quote and its formalization
 Distributed state machine: 1978 Byzantine processes (synchronous systems): 1980 Impossibility of consensus: 1985 	 "A distributed system is one in which the failure of a computer you didn't even know existed can render your own computer unusable" (L. Lamport) Fischer M.J., Lynch N.A., and Paterson M.S., Impossibility of distributed consensus with one faulty process. Journal of the ACM, 32(2):374-382 (1985) Reminder: DC is about Mastering UNCERTAINTY!

Reliable broadcast in a crash model poss./imposs. Reliable broadcast in a Byz model poss./imposs. Reliable network • Reliable network: t < n|t < n/3|• Network with fair channels: Tradeoff: $\star | t < n/2$ fault communication steps number of * Additional computability power is needed to have a resilience message types messages quiescent algorithm Bracha 3 $2n^2 - n - 1$ t < n/3Imbs-Ravnal 2 $n^2 - 1$ t < n/5The quiescence property is related to implementations: an application message cannot give rise to an infinity of protocol messages - Bracha G., Asynchronous Byzantine agreement protocols. Information & Computation, 75(2):130-143 (1987) Fair channel: intuitively a channel can experience transient message losses - Imbs D., Raynal M., Trading t-resilience for efficiency in asynchronous Byzantine reliable broadcast. Parallel Processing Letters, 26(4), 8 pages (2016) 🚬 I R I S A IRISA © M. Raynal Blockchain: buzzword/engineering/science? 29 © M. Raynal Blockchain: buzzword/engineering/science? 30 Implement an atomic register Consensus: definition • Validity: * Crash model: a decided value is a proposed value • Asynchronous crash failure model: t < n/2* Byzantine model: il all correct processes propose the same value, this value is decided - Attiya H., Bar-Noy A. and Dolev D., Sharing memory robustly in message passing systems. Journal of the ACM, 42(1):121-132 (1995) Agreement: • Asynchronous Byzantine failure model: |t < n/3|* Crash model: no two different processes decide different values - Imbs D., Rajsbaum S., Raynal M., and Stainer J., Read/Write shared memory abstraction on top of an asynchronous Byzantine * Byzantine model: no two correct processes decide message-passing system. Journal of Parallel and Distributed Computing, 93different values 94:1-9 (2016) Termination: If a correct process invokes propose() it decides a value

IRISA

31

The notion of an indulgent distributed algorithm
 A distributed algorithm is indulgent with respect to a failure detector FD it uses to solve a problem Pb if * it always guarantees the safety property defining Pb (i.e., whatever the correct/incorrect behavior of FD), * and satisfies the liveness property associated with Pb at least when FD behaves correctly Hence, when the implementation of FD does not satisfies its specification, the algorithm may not terminate, but if it terminates its results are correct All Ω-based algorithms are indulgent Notions of stable vs unstable periods Guerraoui R., Indulgent algorithms. Proc. 19th ACM Symposium on Principles of Distributed Computing (PODC'00), ACM Press, pp. 289-298 (2000)
Beyond state machines and blockchains

1 out-of <i>k</i>	ℓ out-of k
 Assume n sequential state machines (blockchains) Requirement: at least one of them must progress forever Gafni E. and Guerraoui R., Generalizing universality. Proc. 22nd Int'l Conference on Concurrency Theory (CONCUR'11), Springer LNCS 6901, pp. 17-27 (2011) 	 Assume n sequential state machines (blockchains) Requirement: at least ℓ of them most progress forever, 1 ≤ ℓ ≤ k Raynal M., Stainer J., and Taubenfeld G., Distributed universality. Algorithmica, 76(2):502-535 (2016)
FIRISA © M. Raynal Blockchain: buzzword/engineering/science? 41 ℓ out-of k (cont'd)	C M. Raynal Blockchain: buzzword/engineering/science? 42
 Introduces (k, l)-consensus objects (k, l constant) Considering k objects (seq. state machines, blockchains), it introduces a (k, l)-universal construction in which l (1 ≤ l ≤ k) objects progress forever in which the progress condition is wait-freedom that is contention-aware (only read/write registers are used in the absence of contention) that is generous wrt to the obstruction-freedom progress condition Shows that (k, l)-consensus objects are necessary and sufficient for such a (k, l)-universal construction 	CONCLUSION

What has been learnt	Two of my leimotivs
 A visit to state machine replication in asynchronous systems What can/cannot be done in static asynch Byz systems A try to understand blockchain concept: is the novelty: Synchronous state machine replication in dynamic systems? 	 When something works, we need to kow why it works, and when something does not work, we need to kow why it does not work Correctness may be theoretical but incorrectness has practical impact!
 To be done: Extract the problems, concepts and abstractions which are new wrt state machine duplication and solve them! Looking at the future: coordination of blockchains? (biology-like) 	
A few recent research papers on blockchain consensus	C M. Raynal Blockchain: buzzword/engineering/science? 46
 Crain T., Gramoli V., Larrea M. and Raynal, M., (Leader/Randomization/ Signature)-free Byzantine Consensus for Consortium Blockchains. https://arxiv.org/abs/1702.03068 (2017) Eyal I., Gencer A.E., Sirer E.G., and van Renesse R., Bitcoin-NG: a scalable blockchain protocol. Proc. 13th Usenix Conference on Networked Systems Design and Implementation (NSDI'16), pp.45-59 (2016) 	© M. Raynal Blockchain: buzzword/engineering/science? 46
 Crain T., Gramoli V., Larrea M. and Raynal, M., (Leader/Randomization/ Signature)-free Byzantine Consensus for Consortium Blockchains. https://arxiv.org/abs/1702.03068 (2017) Eyal I., Gencer A.E., Sirer E.G., and van Renesse R., Bitcoin-NG: a scalable blockchain protocol. Proc. 13th Usenix Conference on Networked Systems Design and Implementation (NSDI'16), pp.45-59 (2016) Hearn M., Corda: a distributed ledger. Version 0.5 (2016) Kwong J., Tendermint: Consensus without mining. v.0.7 (2016) Luu L., Narayanan V., Zheng C., Baweja K., Gilbert S. and Saxena P., A secure sharding protocol for open blockchains. ACM Conference on Computer and Communications Security (CCS'16), ACM Press, pp. 17-30 (2016) 	C M. Raynal Blockchain: buzzword/engineering/science? 46